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Abstract

We show that a Poisson cluster point process is a nearest-neighbour Markov point process [2] if the clusters
have uniformly bounded diameter. It is typically not a finite-range Markov point process in the sense of Ripley
and Kelly [11). Furthermore, when the parent Poisson process is replaced by a Markov or nearest-neighbour
Markov point process, the resulting cluster process is also st-neighb Markov, provided all clusters are

nonempty. In particular, the nearest-neighbour Markov property is preserved when points of the process are
independ I domly t lated, but not when they are randomly thinned.

tly

1. INTRODUCTION

Markov or Gibbs point processes (2, 8, 11, 12] form a large, flexible, and understandable class
of point process models with many practical advantages (see e.g. [4, 9, 10] for surveys). In
this paper we consider the relationship of these models to the basic point process operation of
clustering. We ask whether cluster processes are Markov, and whether the Markov property
is preserved under clustering.

In a Poisson cluster process, intuitively the only ‘spatial dependence’ present is that be-
tween offspring of the same parent. If the offspring of a given parent all lie within distance R
of the parent, then two offspring of the same parent lie at most 2R apart, and it is plausible to
conjecture that the process is Markov with finite interaction range 2R in the sense of Ripley
and Kelly [11].

However, this turns out to be false in general, because certain spatial configurations of the
offspring points imply information about the unobserved parent points, and this information
can ‘propagate’ over arbitrarily large distances.

In this paper we show that cluster processes have the nearest-neighbour Markov property
in the sense of Baddeley & Mgller [2]. We prove that (a) any Poisson cluster process with
uniformly bounded clusters is a nearest-neighbour Markov point process; and (b) if a Markov
or nearest-neighbour Markov point process is used as the parent process for a cluster process,
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and the clusters are uniformly bounded and a.s. nonempty, then the cluster process is again
nearest-neighbour Markov. In particular, the nearest-neighbour Markov property is preserved
under random displacement of points, but not under random thinning.

These results support the claim [6, 7] that nearest-neighbour Markov processes (as opposed
to Ripley-Kelly Markov processes) provide a rich class of models for clustering, and further
suggest that they may include good models for multiple-generation cluster processes, cf. [5].
Result (a) may also explain why statistical theory for Poisson cluster processes so closely
parallels that for Markov point processes [1].

The next section recalls standard definitions; the main results are stated in Section 3 and
the proofs follow in Section 4.

2. SETUP
2.1 Point processes
We consider finite point processes X on a metric space S (typically R or a compact subset).
Each realization of such a process “is” a finite set x = {z1,...,z,} of points z; € S with
n > 0. Strictly speaking the points may be multiply occupied, and n is the total multiplicity,
but this will have probability zero in the applications considered. Realizations will also be
called ‘configurations’ and the class of all configurations will be denoted by C. This is the
exponential space of S, see [3] or 2] for details.

Let v be some given Borel measure on S (typically Lebesgue measure); we will consider

processes whose distributions are absolutely continuous with respect to the measure 4 on C
defined by

u(F) = ?‘;0%//1 Kyis---»y&} € F) du(y). .. dv(y). (2.1)

If v is totally finite (e.g. if S is compact and v is Lebesgue measure), then s is e/(5) times
the distribution of the Poisson process on S with intensity measure v.

Let f : C — [0,00) be the density of a point process X with respect to u. We say f is
hereditary if

f(x) >0 implies f(z)>0forallzCx
and hereditary ezcluding @ if this holds except when z = @.

2.2 Markov point processes
This subsection collects necessary definitions from [2, 9, 11].

Define u,v € S to be r-close, written u ~ v, if d(u,v) < r where d is the metric of §. This
defines a relation ~ on S which is clearly symmetric and reflexive. [The results of this paper
extend to the case where ~ is any symmetric reflexive relation on S which is measurable in
the product space. Theorem 2 in Section 3 requires two such relations. |

Definition 1 (Ripley-Kelly) A point process X is Markov with respect to the static rela-
tion ~ if its density f satisfies

e f is hereditary;



o for «ny x € C such that f(x) > 0 and u € S, the ratio

fxu{u})

) (2.2)

depends only on v and on {x; € x: u ~ z;}.

Now define for each x € C the “connected component relation” [2, Appendix III] between
points of x by

Xie X iff ri~2z~ -~z ~z; forsomez,...,z, €x

In other words, two points of x are related under ~ if they are in the same connected
X
component of the finite graph whose edges connect every pair of 7-close points in x.

Definition 2 (Baddeley-Mgller) A point process X is nearest-neighbour Markov with re-
spect to the dynamic relation ~ if its density f is hereditary and the ratio (2.2) depends only
on u, on

Nbd (u | x U {u}) = {.1:,- Ex:u ;1‘,‘},

and on the relations ~, ~ restricted to Nbd (u | x U {u}).
X xu{u}

Clearly if X is Markov with respect to ~, it is also nearest-neighbour Markov with respect
to both ~ and v

Analogues of the Hammersley-Clifford theorem proved in [11] and in [2] give explicit ex-
pressions for the density f when X js Markov and nearest-neighbour Markov, respectively.
Define a configuration z to be a cligue with respect to ~ (or an r-clique) if all pairs of points
in z are r-close, z; ~ z; for all z;, 2; € 2. Then [11] X is Markov iff

fx) = T ¢l2) (23)
zCx
where ¢(z) > 0 with o(2z) # 1 only if z is a clique.

In the nearest-neighbour case, a subconfiguration z C x is termed a clique with respect to
~ if all pairs of points in z are ;a-neighbours, Ziyz for all z;, z; € z. The maximal r-cliques
are also called connected components.

An analogue of (2.3) for dynamic relations g is given in (2, Theorem 4.13]. For the
‘connected component relation’ this specialises to the following result.

Lemma 1 A point process X is nearest-neighbour Markov with respect to the connected com-
ponent relation v if

fx= I e (2.4)
cliques zCx

where ¢(-) > 0 is such that whenever z is a f;:-clique with p(z) > 0 then p(w) > 0 for all
wCz.



For example, for a Matérn cluster process, in the case s < 2R consider a configuration of
three points yy,y2,y3 such that ||ly1 — 2]| < s, |ly2 — val| < s, but ||y — y3|| > s. If f were a
Markov function at range s then

Fy1, 2,9 {w2}) = F({yr w2 1) f ({y2, y3})-
Substituting (3.7) gives

[1+e“J(y1,y2) + €/ J(y2,y3)] = [L+ e T(y1,92)] [L + €T (y2,33)] -

This is clearly a contradiction, since the J terms are nonzero. Hence f is not a Markov
density in the Ripley-Kelly sense at distance s. For s > 2R one can use similar arguments
involving chains of more than three points.

Next we consider cluster processes generated from a parent process which is Markov or
nearest-neighbour Markov. In general the cluster process is not Markov.

Counterexample 2 Let x be a Ripley-Kelly Markov point process (finite range r) and y
the result of thinning the points independently with retention probability q, 0 < ¢ < 1. Then,
in general, y is not a nearest-neighbour Markov point process (and a fortiori it is not a
Ripley-Kelly Markov process) for any R < oo.

This can be checked from (2.6), since random thinning is the special case of clustering in which
Z¢ = {£} with probability ¢, and Z¢ = @ otherwise. For any given pair of points y;,y; € y
there are (potentially) nonzero summandsin (2.6) of the form gz, (¥:)gz, (9) - - - Gzp_, (0)gan (¥5)
involving both y;,y;. Hence y is not nearest-neighbour Markov according to (2.4).

Clearly this problem may arise whenever clusters are permitted to be empty, i.e. when a
parent point may have no offspring. When this is excluded, we do obtain a Markov property.

Theorem 2 Let x be a Markov or nearest-neighbour Markov point process at range r and y
the associated cluster process satisfying (A)-(D) of section 2.3 and moreover

(E) the clusters are nonempty a.s.

Then y is a nearest-neighbour Markov point process for the connected component relation at
range 2R + 7.

Corollary 1 Let x be as above, and let y be the process obtained from x by independently
translating each point: y; = x; + v;, where the vectors v; are i.i.d., have a probability den-
sity, and satisfy ||vi|| < R a.s. Theny is o neurest-neighbour Markov point process for the
connected component relation at range 2R + 7.



4. Proots

Proof of Lemma 1:

Suppose that (2.4) holds. et x € C, £ € S and let xp,,...,xp, and w U {£} denote the
connected components of x U{¢}. Then, if xpg,,,...,Xp, are the connected components of
w, we have that xp,,...,xp, are the connected components of x, and

K
F(xU{E}) = (@) [H II 90(2)] »(z)
=1 02aCxy, 02aCwU{E}

while

K L
F(x) = (0) [H II w(Z)} I I e
i=10#zCxp, J'=K+1(D#zgxg‘7
Hence f(x U {¢}) > 0 implies f(x) > 0 (as z C xp, for j > K implies that z C w) and
f(xU{¢})/f(x) satisfies the conditions of Definition 2. Thus X is nearest-neighbour Markov.
Conversely, suppose X is nearest-neighbour Markov. By the analogue of the Hammersley-
Clifford theorem {2, Theorem 4.13],
f(x) = H Py (taking 00 = 0) (4.9)
yex
where x(y [x)=1ifyisa ;a-clique and 0 otherwise; and ¢ : C — R, satisfies

(I1) (x) > 0 implies ¢(y) > 0 forally C x

(12) @(x) > 0 and ({6} UNDA (€ | xU{€})) > 0 imply w(x U {¢}) > 0.
Note that, in the case of the connected component relation, £ 5 7 implies £ TN for x Dy,

so that x(y | y) = 1 implies x(y | x) for any x D y.

To prove that (4.9) reduces to (2.4) we need to show that, if ¢(y) > 0 for all y C x with
x(y | x) =1, then ¢(y) > 0 for all y C x.

To prove this, suppose v, w C x are disjoint connected components of x (i.e. with respect
to r;). If ¢ € v then Nbd(¢ | wuU{¢}) = {€}, and by assumption p({£}) > 0, so (I2)
gives o(w U {€}) > 0. Similarly if {¢,n7} C v then Nbd(n | wuU {¢,n}) = {& n}, and by
assumption p({&,7}) > 0, so (I2) gives p(w U {£,n}) > 0. Continuing in this way we obtain
that o(y) >0 for all y C x.

Hence if X is nearest-neighbour Markov then its density is of the form (2.4) where ¢
satisfies (I1) and hence the condition stated in the Lemma.

a

Proof of Lemma 2:

The clusters Z; being conditionally independent given x, we have for any measurable event
F

P{yeF | x} /1 [U Z; € F] 42, (Z1) - Qza(Zn) dp(Z1) .. . du(Zn)

Y [1lv e Pl anlve)  ga(vc,) duty).
C1,..,Cn
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The last line was obtained using (2.1) by rewriting each integral over Z; as a sum of multiple
integrals with respect to » and regrouping. The result follows by taking expectations with
respect to x. O

Proof of Theorem 1:
By (2.6), the density of y with respect to u is (for y # 0)

( P i dA(@1) -+ dA: (4.10)
» = Y= /S---/SCEC“:II}:.-(yci)-<m-~~ (za) .
%0 -A(S) n
= .?‘:‘1 = C‘gcniI:Il/Sqe(yc.»)d»\(é), (4.11)

here the inner sum is over all ordered partitions of y into n disjoint, possibly empty, sets.
Since the parent process is Poisson, the number of non-empty clusters is Poisson distributed
with mean 8 = [5(1 — ¢¢(B)) dA(£), so that for y = 0 we have f(0) = e™%.

Now g¢(z) = 0 whenever z ¢ b(£, R); hence if g¢(z) # 0 then all pairs of points in z are
2R-close, i.e. z is a clique with respect to the finite range relation with distance 2R. Hence
the integral in (4.11) is nonzero only when the partition consists of 2R-cliques.

For y % @, let yp,,...,YDx be the connected components of y for the relation ~ with

range 2R. Then the integral in (4.11) is nonzero only when the partition is a refinement of
Dy,...,Dg. Let Cy,...,Ck be an (unordered) partition refining Dy,..., Dy and consisting
of non-empty sets. This contributes a term

k
d\
el [ aeve) ax
to the density. Since [gg¢(0) dA(§) = A(S) — B, the coefficient « is

ie

n=k

=X(

S)
(A0S =B Fan-1)(n-k+1) =€

The class of all partitions that are refinements of Dy,...,Dg is the Cartesian product of
the sets of partitions of each D;. Hence, for y # 0,

K
fly) =ePT] ®(vn,) (4.12)

i=1

where

k
o =% ¥ I [t axe (413)

k>12Z¢) 20 j=1

where z¢,, . . ., z¢, range over all (unordered) partitions of z into nonempty subconfigurations.

Since the offspring densities g; are hereditary excluding @, clearly ® is hereditary exclud-
ing @, and hence f is hereditary. According to (2.4) the density (4.12) is nearest-neighbour
Markov with respect to the connected component relation at range 2R. O
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Proof of Theorem 2: The density p(x) of x can be factorised as in (2.4). By (2.6), the
density of y with respect to p is

n(x)
si= [ % T antve) px)aut) (414)
T Cax) 1

where the sum ranges over all ordered partitions of y into disjoint, possibly empty subsets.
Since ge(#) = 0. the integrand of (4.14) can be rephrased as

ST ety 1)) p(x) (4.15)
B

‘

where € ranges over all surjective mappings of the points of y onto the points of x, identified
with mappings from {1,.. .m} onto {1,...,n}.
We can restrict attention to those e such that

d(yivxy) < R for all i (4.16)
since all other terms are zero. For such ¢, if z € x is an r-clique and €7!(z) = w C y, then

w must be a (2R + r)-clique. To sce this, take y;,y; € w and apply the triangle inequality:

d(yi, y5) A(Yi, Te(y) + d(e(iy, Tegzy) + d(@ (5, ¥5)

<

< R+r+R.

By a similar argument, if z C x is a clique with respect to the relation ~ at distance r, then
w is a clique with respect to the relation ~at distance 2R + 7.

Letyp,,....ypy be the connected com;;onents of y with respect to the relation at distance
2R + r. Then we can rewrite (4.15) as

I e e

cliques zcx € i=l
n I
= > (eew) 11 II o(z)
N k=1 cliques zCx:e~}(2)C Dy
K
= 2II I[[ e II w(z)| . (@17)
€ k=1 |ie=(4)C Dy cliques 2Cx:e~}(z)C Dy

Any ¢ of the type described above can be represented as an ordered set of K surjective
mappings

€ : Dy — D} = {i | d(z;,y;) < R for some j € D;}

automatically satisfying the norm condition (4.16). Note that Xp:, k=1,...,K form a
disjoint partition of x. Thus (4.17) is
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K
H H ‘sz(yfh-l(,')) H w(z)

k=1 €k |ieD) cligues 2Cxp1

Integrating over x and exploiting the form (2.1) of x yields

K n(v)
fO) =T [S Mty I vl duto).
k=17C¢e i=1 cliques zcv

Thus, f factorises as required by (2.4). The hereditary property follows as in the previous
proof.
a
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